B.Sc.
 MATHAMETICS
 I Semester End Examination- March/April 2022
 ALGEBRA-I and CACULUS-I

Course Code: MAT1DSC01

QP code:1015
Time: 2hrs

Max. Marks: 60

Instruction to Candidates: Answer all questions

I. Answer any Six of the following Questions:

1. Define skew-symmetric matrix. Give an example.
2. If λ is an eigen value of a square matrix A with X as a corresponding eigen vector, then show that λ^{2} is the eigen value of A^{2}
3. Find $\mathrm{n}^{\text {th }}$ derivative $e^{3 x} \cos 4 x$
4. Show that does not exist for $\lim _{x \rightarrow 0}\left(\frac{1}{1-e^{\frac{1}{x}}}\right)$
5. State Rolle's mean value theorem.
6. Evaluate using L' Hospital's rule.

$$
\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}
$$

7. If $u=x^{3}+3 x^{2} y$ then show that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$
8. Find total derivative $\frac{d u}{d t}$ of $u=x y$, where $x=\log _{e} t, y=e^{t}$

II. Answer any Two of the following Questions:

$$
2 \times 6=12
$$

1. Find the rank of the matrix $\left(\begin{array}{llll}1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5\end{array}\right)$ by reducing it to echelon form.
2. Test the following system of equations for consistency and solve them if they are consistent

$$
\begin{gathered}
x+2 y-z=3 \\
3 x-y+2 z=1 \\
2 x-2 y+3 z=2
\end{gathered}
$$

3. a) By using Cayley-Hamilton Theorem, find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right]$
b) Find the Eigen values of the matrix $\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 2 & 1 \\ 0 & 0 & -3\end{array}\right]$

III. Answer any Six of the following Questions:

1. a) Discuss the differentiability of the function $f(x)=\left\{\begin{array}{cc}1+2 x & \text { for } x \leq 0 \\ 1-3 x & x>0\end{array}\right.$ at $\mathrm{x}=0$

BMSCW LIBRARY QUESTION PAPER

b) Find the nth derivative of $\frac{x+3}{(x-1)(x+2)}$
2. If $y=\sin ^{-1} x$ prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$
3. Prove that a function which is a continuous in a closed interval takes every value between its bounds atleast once.
4. State and prove Lagrange Mean Value Theorem.
5. a) Expand e^{x} siny in powers of x and y up to second degree terms using Maclaurin's expansion.
b) Evaluate using L' Hospital's rule $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}$
6. a) If $\mathrm{u}=(\mathrm{x}-\mathrm{y})^{4}+(\mathrm{x}+\mathrm{y})^{4}$ find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}$
b) If $u=x^{2}, v=y^{2}$ find $J^{\prime}=\frac{\partial(x, y)}{\partial(u, v)}$
7. If $u=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right), \mathrm{x} \neq y$, Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$
8. Test for maximum and minimum of the function $f(x, y)=2 x^{2}-x y+y^{2}+7 x$

