BMSCW LIBRARY QUESTION PAPER

B.Sc.

MATHAMETICS

I Semester End Examination- March/April 2022 ALGEBRA-I and CACULUS-I

Course Code: MAT1DSC01 Time: 2hrs

QP code:1015 Max. Marks: 60

Instruction to Candidates: Answer all questions

I. Answer any Six of the following Questions:

- 1. Define skew-symmetric matrix. Give an example.
- 2. If λ is an eigen value of a square matrix A with X as a corresponding eigen vector, then show that λ^2 is the eigen value of A^2
- 3. Find nth derivative $e^{3x} \cos 4x$
- 4. Show that does not exist for $\lim_{x\to 0} \left(\frac{1}{1-a^{\frac{1}{x}}} \right)$
- 5. State Rolle's mean value theorem.
- 6. Evaluate using L' Hospital's rule.

 $\lim \frac{a^x - b^x}{x}$

7. If
$$u = x^3 + 3x^2y$$
 then show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

8. Find total derivative $\frac{du}{dt}$ of u = xy, where $x = \log_e t$, $y = e^t$

II. Answer any Two of the following Questions:

- 1. Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{pmatrix}$ by reducing it to echelon form.
- 2. Test the following system of equations for consistency and solve them if they are consistent
 - x + 2y z = 3, 3x - y + 2z = 1,2x - 2y + 3z = 2
- 3. a) By using Cayley-Hamilton Theorem, find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$
 - b) Find the Eigen values of the matrix $\begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 1 \\ 0 & 0 & -3 \end{bmatrix}$

III. Answer any Six of the following Questions:

1. a) Discuss the differentiability of the function $f(x) = \begin{cases} 1+2x & \text{for } x \le 0\\ 1-3x & x > 0 \end{cases}$ at x=0

 $2 \ge 6 = 12$

 $6 \ge 6 = 36$

 $2 \ge 6 = 12$

BMSCW LIBRARY QUESTION PAPER

b) Find the nth derivative of $\frac{x+3}{(x-1)(x+2)}$

2. If $y = \sin^{-1} x$ prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$

3. Prove that a function which is a continuous in a closed interval takes every value between its bounds atleast once .

(3+3)

(3+3)

(3+3)

- 4. State and prove Lagrange Mean Value Theorem.
- 5. a) Expand $e^x siny$ in powers of x and y up to second degree terms using Maclaurin's expansion.

b) Evaluate using L' Hospital's rule
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$$

6. a) If $u = (x - y)^4 + (x + y)^4$ find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$
b) If $u = x^2$, $v = y^2$ find $J' = \frac{\partial(x,y)}{\partial(u,v)}$

7. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$, $x \neq y$, Show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = sin2u$

8. Test for maximum and minimum of the function $f(x, y) = 2x^2 - xy + y^2 + 7x$